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Abstract

A phenomenological energy-based model for stress-softening of isotropic, incompressible hyperelastic rubberlike materials is derived
here. In this model, the microstructural damage is characterized by an exponential softening function that depends on the current magnitude
of the strain—energy function and its maximum previous value in a deformation of the virgin material. Theoretical models are presented for
uniaxial, equibiaxial and pure shear deformations by using Gaussian and non-Gaussian material molecular network models. The accuracy of
the resulting constitutive equations is demonstrated on uniaxial, equibiaxial and pure shear experimental data provided in the literature.
Comparisons between the energy-based model and the strain intensity based phenomenological model described in [Elias-Zuiniga A, Beatty
MF. ZAMP 2002;53:794-814. [1]] show that the model developed here is slightly superior in following experimental data.
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1. Introduction

Rubberlike materials are known to exhibit a highly non-
linear elastic behavior under static load, a viscoelastic
behavior including hysteresis under cyclic loading, and a
stress-softening phenomenon known as the Mullins effect.
Since, the modelling of the physical behavior of these
materials is complex, we only considered here static
behavior and focus on the characterization of Mullins effect
of rubberlike materials under several deformation states. An
excellent overview of both experimental and theoretical
aspects of Mullins effect is provided in Refs. [2—6]. There
are also many studies concerning time-independent con-
stitutive equations to characterize aspects of phenomen-
ological descriptions of Mullins phenomenon based on
strain—energy functions. Some representative works are
papers written by De Souza Neto, Peri¢ and Owen [7],
Ogden and Roxburgh [6], Holzapfel, Stadler and Ogden [8],
Dorfmann and Ogden [9], and Horgan et al. [10]. These
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publications focus on phenomenological strain—energy
functions that depend on a damage parameter associated
with the maximum energy on the primary loading path
rather than the specific deformation state that governs the
unloading response.

The aim of this paper is to introduce a new phenomen-
ological network model for the Mullins effect based on
strain—energy functions of isotropic, incompressible hyper-
elastic, time independent rubberlike materials. This theor-
etical damage model is developed in order to provide a
description of an idealized form of the Mullins effect for
various deformation states. It is important to point out that
this phenomenological model closely parallels the strain-
based model developed by Elias-Zufiiga and Beatty [1] in
which the determination of only two material constants for a
neo-Hookean material model: the shear modulus g, and the
softening rate parameter b, and three constants for non-
Gaussian molecular network models: ug, b, and the model
specific molecular chain number of links N are required.

The paper is organized as follows. We begin in Section 2
with a brief review of the relations for finite deformations of
an incompressible elastic material. In Section 3, we present
a brief description of the Ogden and Roxburgh energy-based
phenomenological approach to model Mullins effect [6]. In
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Section 4, we present a new constitutive model for stress-
softening for which the damage function depends on the
magnitude of the energy at a material point; and we
introduce in Section 5 a specific damage function that is
used in a great variety of deformation states. We then apply
the Gaussian, neo-Hookean and non-Gaussian, James—Guth
[12] and Arruda—-Boyce [13] molecular network models as
well as the phenomenological full-network composite
model to derive in Section 6 corresponding virgin material
and stress-softened material constitutive equations. Results
demonstrating the effects of stress-softening for these
molecular network models in uniaxial extension, pure
shear and equibiaxial deformation are compared in Section
7 with experimental data by Mullins and Tobin [3], Muhr
[15], Cheng [16], Johnson and Beatty [17] and by Chagnon
[18]. It is shown for these data that our phenomenological
energy-based stress-softening material model predicts with
great accuracy the Mullins effect in rubberlike materials. In
Section 8, we briefly review the strain-based phenomen-
ological model developed by Elias-Ziiiiga and Beatty [1]
for stress-softening in elastomers. Finally, we compare in
Section 9 our proposed energy-based model with the strain-
based phenomenological model by applying the correspond-
ing virgin material and stress-softened material constitutive
equations with data by Cheng [16], Johnson and Beatty [17]
and by Chagnon [18]. It is shown for these data, that our
energy-based model is slightly superior to the strain-based
model in following experimental data.

2. Preliminaries

We recall briefly some essential relations for finite
deformations of an incompressible elastic material. Let us
consider a material particle at the place X=X;e, in an
initially undeformed reference configuration of a body.
When subjected to a prescribed deformation, the particle at
X moves to the place x =xey in the current configuration of
the body in a common rectangular Cartesian frame ¢ = {0;
e} with origin O and orthonormal basis ey. An isochoric
deformation is described by

X =0X, X =hX, x =X (1)

in which 4; denote the principal stretches in ¢. The Cauchy—
Green deformation tensor B=FF” has the form

B = Afe;; + Asey + Aes; ()

where ejx=e;®e,, e; are the associated orthonormal
principal directions, and F is the usual deformation gradient.
In the undistorted state F=1, and m = +/3; otherwise, m >
/3 for all isochoric deformations [5]. The magnitude of the
strain at a material point X, also called the strain intensity
and denoted by m, is defined by m = /BB = VB2, where
tr denotes the trace operation. The principal invariants [ of
B are defined by

1
L=uB, L= (I} —tw(®B%)], I, =detB (3)

so the magnitude m of B as a function of the invariants is
given by

m=\/I} —2I, 4)

We note that m > +/3 for all A, equality holding when and
only when A=1, the undeformed state. Also, for all
deformations of an incompressible material we have I3=1.

3. Review of Ogden—-Roxburgh pseudo-elastic model

Ogden and Roxburgh [6] proposed a phenomenological
pseudo-elastic model to characterize Mullins effect in filled
rubber. They assumed that on the first loading path its
stress—strain behavior may be described as a function of the
principal stretches by

ow
T[, = Ai—(ll,/\z,h,”fl) - D

a i=1,2,3, nosum (®)]

in which the strain—energy function W is related to the
pseudo-energy function W via

W(Al’ AZ’ 77) = UW(;H, A2) + ¢(77) (6)

where 7 is an additional scalar continuous damage
parameter that takes the value unity on the virgin path,
¢(n) is a smooth damage function with ¢(1)=0, and
W(A1,45) is the strain—energy function that characterizes any
primary loading path. On subsequent loading cycles, 7
satisfiles 0<n <1 and attains its unit value only if W(4,,
22) 2 Wax(A1 s A2), Where Wi, Ay, and A,, correspond
to the previous maximum energy state. Ogden and
Roxburgh have shown that the damage function satisfies
the relation

—¢'(m) = WA, Ay) (7)

which defines 7 in terms of the deformation state as well as
on the specific forms of W(A;,A,) and ¢(n) used. Also,
Ogden and Roxburgh [6] in their pseudo-elasticity model
defined the dissipation function ¢(7) to have the form:

—¢'(n) = myerf ' (r(n — 1)) + Winax (8)

where m; and r are positive material constant parameters
and erf '() is the inverse of the error function. They
applied it to characterize Mullins effect in simple uniaxial
extension data obtained from Mullins and Tobin (1957) with
great accuracy. Recently, Dorfmann and Ogden [9] selected
a different damage function given by:

—¢/'(n) = mytanh ™" (r(n — 1)) + Wy 9)

and they used it to characterize loading, partial unloading
and reloading of a particle-reinforced rubber with hysteretic
response [9]. We now turn to the development of a new
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phenomenological energy-based model to describe stress-
softening effect in rubberlike materials.

4. A new phenomenological energy-based model for
stress-softening

To characterize the virgin material response of an
incompressible and isotropic elastic material, we consider
a time independent constitutive equation of the form

T, = —pl + X}, ,)B +X_ (I}, ,)B™" (10)

where T, is the Cauchy stress, p is an undetermined
pressure, and Xy = Xp(I;,1;), =1, —1, denote the virgin
material response functions that can be determined by a
strain—energy function W= W(l,,l,), per unit reference
volume, in accordance with

Nl = 2W1, N—l = _2W2 (11)

wherein W, =dW/dI, [5]. During loading of the virgin
material, the maximum previous strain—energy is its current
value, W.x=W. In addition and for many standard forms
of strain—energy functions, W is a monotonic increasing
function of the amount of stretch from the undeformed state.
The phenomenological model proposed here is based on
the assumption that microstructural material damage is
characterized by a certain isotropic and monotonic increas-
ing function ¥ (W;W,,,) that depends on the material
strain—energy density W and satisfies the conditions

O<YW: Wiax) <1, W (Wi Winax) = 1 12)

where W, represents the maximum previous strain energy
density at the point at which the material is unloaded from
the virgin path. The softening function ¥(W;W..x) is
determined by a constitutive equation that describes the
evolution of microstructural change that begins immedi-
ately upon deformation from the natural, undistorted state of
the virgin material. We assume that &' (W;W,,,,) is a positive
monotonic increasing function of the strain intensity on the
interval m € [v/3,M] and that it depends on the different
forms of strain—energy functions. Thus, our proposed model
can be considered as a pseudo-elastic model [6].

If we let m,,x = M be the amount of stretch at the point at
which the material is unloaded and fix the maximum
previous strain energy at W= W, then, the stress-softened
material response for subsequent unloading and loading
again from an undeformed state, or from any other elastic
point for which W<W_,, is defined by the time-
independent constitutive equation

T =Y W; Wia)To 13)

where T denotes the Cauchy stress in the stress-softened
material. It is evident by substituting (6) in (5) that our
softening function ¥(W;W,.,) is identical to Ogden—
Roxburgh damage parameter 1 defined in Section 3, i.e.

WW; Winax) =1 (14)

and hence, we may use Ogden—Roxburgh pseudo-elastic
theory to determine this function. We shall return to this
later.

Notice from Eq. (13) that t=Ty=0, when and only
when m = /3. Also, the virgin and stress-softened material
response values coincide at each softening point for which
W=W,..x and m,,=M. The material behavior described
by (13) for W< W, is ideally elastic for both loading and
unloading as long as the value of W does not exceed its
maximum previous value Wy,,.. Thereafter, the material
recalls its virgin material response described by (10).

In accordance with (12) and (13), the ratios of the non-
trivial physical stress components T;; in the virgin material
to the corresponding non-trivial physical components 7;; in
the stress-softened material, for a given deformation state,
are determined by the inverse of the softening function
alone

Ty _ 1 oy
YW Wha)

i,j =1,2,3, nosum (15)
-

the equality holding when and only when W= W, . In sum,
for a given isochoric deformation B, the magnitude of the
stress component in the stress-softened material is smaller
than the magnitude of the non-trivial corresponding stress
component in the virgin material.

We shall see in Section 5 how to obtain a damage
function ¢(n) that depends on only one positive parameter
called the material softening parameter.

5. A stress-softening material model

In order to determine the softening function ¥'(W;W.x),
we use the Ogden—Roxburgh [6] pseudo-elastic model and
select a damage function ¢(n) of the form:

1/n
—¢'(n) = —1 (% In n) + Winax (16)

where b is a positive material constant, named the softening
parameter and n is a specified positive constant chosen to
best fit data for a given rubberlike material. Henceforward,
we consider the value of n=1/2. On substitution of Eq. (7)
into Eq. (16) and after a little algebraic manipulation, we
obtain the expression for the scalar continuous damage
parameter n:

N=W(W; Wyygy) = e V=W (17)

Since, W(A,42) < Wiy, it follows that n <1 with equality
holding when and only when W(A;,4;) = W,.x.

Substitution of Eq. (11) into Eq. (10) using the general
class (13) and recalling Eq. (14), we thus obtain the
following simplified Mullins material model:
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T = Toe_b Winax—W) (18)

in which each member of the family of elastic stress-
softened materials (18), characterized by the previous
maximum strain energy density Wi,.,, is generated from a
specified virgin material model in the class (10). Note that
during primary loading of the virgin material, the maximum
previous strain energy density is its current value and hence
Eq. (18) yields =Ty, the virgin material response. When
the virgin material is unloaded from a state of maximum
previous strain for which W(A,4;) is either fixed at its
maximum previous value, W(A;,A;)=W, .\, or it is
decreased the stress-softened material response follows
(18). In fact, as long as W(A;,4y) <Wp.x the material
response is ideally elastic for decreasing as well as for
increasing strain. When the material is further loaded on
subsequent second deformation of the stress-softening
material from its maximum previous strain at the softening
point, the response is again described by the virgin
constitutive Eq. (10).

Integration of Eq. (16) with respect to 7 yields the
explicit expression for the damage function ¢(n):

] 1 2
¢m)=J ((%ﬁ) —wgn)mv
1

=% {n(l —lnn+%{lnn}2> —1]

(1 =) Wina 19)

On substitution of Eq. (17) into Eq. (19), we obtain the
dependence of ¢ on W,..:

=N W= W) ,
o= (2 — DPW + 267/ Wy — W)

+ VT, —2)) (20)

We may conclude from Eq. (20) that the damage function ¢
depends on the point, where the virgin material is unloaded
from a state of maximum previous strain W,,x.

6. Material models

To illustrate the application of the stress-softening
material model given by Eq. (18), we consider the neo-
Hookean Gaussian virgin material and the classical James—
Guth 3-chain, Arruda-Boyce 8-chain, and the full network
composite non-Gaussian virgin material network models'.

! Note that in all non-Gaussian material network models reviewed here,
the inverse Langevin function can be approximated by §=321,/(1—13), an
empirical estimate that exhibits very good comparison with the exact
numerical values of 8= .L"'(2,) [11].

We shall begin with the neo-Hookean virgin material
model.

6.1. A neo-Hookean material

A neo-Hookean material is described by a Gaussian
strain—energy function of the form

W=%m—$ Q1)

in which uq denotes the shear modulus in the undeformed,
natural state of the virgin material. The corresponding
maximum strain energy at the greatest previous stretch prior
to unloading is given by

Wmax = %(Ilmax - 3) (22)
where
Ilmax = A%max + A%max + A.%max (23)

and (A1 max»A2max> A3max) are the values of (4;,4,,43) at a point
at which unloading begins.

Using Egs. (10) and (11), the virgin material constitutive
equation becomes

In view of (18) and (24), the stress—stretch relations for a
stress-softening neo-Hookean material are given by:

T = (—pl + pB)e Y m =W (25)

Now consider a simple uniaxial extension for which the
Cauchy stress in the virgin material is given by Ty;; =T, all
other components Ty, =0. The equilibrium equations are
satisfied for constant p. The corresponding uniaxial stretch
is denoted by A;=4, and the incompressibility condition
AAxA3=1 requires that ;,=A3=1/A. Then our constitutive
Egs. (24) and (25) yield the following uniaxial stress—stretch
relation for a stress-softened neo-Hookean material:

1
T = W </\2 — /\) e PV =W (26)

The corresponding uniaxial engineering stress is denoted
a,=17/A. Hence, by (26),

I\ pw—w
05 = Ho (X - F)e OV Winax =W (27)

A similar relation may be obtained for an equibiaxial
homogeneous deformation for which A, =4, =4, and A;=
272 In this case, the equibiaxial engineering stress-softened
neo-Hookean material is described by

1 _ —
o5 = Ho (X —f>e VW =W (28)

A pure shear or a plane strain compression is a
homogeneous deformation for which A;=A2, A,=1, and
A3=2""'. Here, the pure shear engineering stress-softened
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neo-Hookean material model is described by

1 _ —
o, = o (A—,)e P W =W (29)

6.2. The James—Guth virgin material model

The strain energy W = W(A;, A, A3) per unit volume for
the three-chain, James—Guth virgin material model [12] may
be written as

ke B;
Wi, = TN3 ; (gj/\j, + 1n(sinh B,-)) - (30)

where k is the Boltzmann constant, n denotes the chain
density per unit volume, © is the absolute temperature, Nj is
the number of rigid links each of length / in a molecular
chain between cross-links of a molecular network consisting
of three identical, orthogonal chains that have the same
initial root-mean square (rms) chain vector length
ro=+/N3l. The constant c3 is chosen so that the strain
energy vanishes in the natural, undeformed state; and §; =
I_I(Aj,) is the inverse of the Langevin function
L(B;) =coth §; — (1/8;). The current chain vector length
in an affine deformation is defined by 7/chain = A;70, Where 4;
represents the macroscopic principal stretch of the con-
tinuum along the jth principal axis. The corresponding jth
relative chain stretch A;, is defined by

L B _ % j =1,2,3,(no sum) G1)
Jr AL \/m b ’ ’ bl
in which Ajchain = Fjchain/To = 4; defines the jth current chain
stretch in the affine deformation, and A,=r;/ry, with
rp =Nsl, is the locking chain stretch.

If (A1 maxsA2max»-A3max) are the values of (1;,4,,43) at which
unloading begins, then the maximum strain energy at the
greatest previous stretch is given by:

nk® 3 6jmax
WSehmaX = —3 N3 ; (6jmaxljrmax + In (m))

— 3

(32)
where

Ajmax
Ajrmax = \/]v 5

and i8jmax = oCl_l(kjrmax)'

Substitution of (30) into (10) and by using (11), we
obtain the constitutive equation for the non-Gaussian,
James—Guth virgin material model in the principal reference
system:

Jj=1,2,3,(no sum) (33)

w —
Ty =—-p+ ?ONSA.]'WL (),

j=1,2,3,(no sum) (34

wherein u represents the shear modulus in the undeformed
state and it is given by uo=nk®.

The James—Guth stress-softened material response in the
same principal reference system, for exponential softening,
is then provided by use of (34) in (18):

M - — —Wac i
Tj = (—p + ?ONSAer I(A‘]r))e b‘\/ Wichmax — W3 h’ j

=1,2,3, (no sum) (35)

Application of (34) and (35) in the manner described earlier
for equilibrium of the neo-Hookean material, yields the
following simple uniaxial engineering stress-softened
relation for a James—Guth material:

N _ A
(03)3—ch = MO\3/_3 <£ : (ﬁ)

1 —1 1 —b\JW: chmax — Wie
_WI ( w3>>e vV W3ch 3ch (36)
for which A;, = M/N3, Ay, = A3, = 1/1/AN;.

In the case of equibiaxial extension for which
Myp= o= MJN5, and A5, =A"2/\/N; the equibiaxial
engineering stress-softened relation is

N- _ A
(05)3—ch = #0\3/‘; <e€ ! (ﬁ)

_ i -1 ! ~b/Wichmax =Wien
o G 7
For a pure shear or plane strain compression deformation
state, the corresponding compressive engineering stress is
d1="Tyi/A, the restraining stress is o,=T(,, and the free
surface stress is ;=0 and hence, the engineering stress-
softened equation is given by

N _ A
(03)3—ch = MO\S/_,% <£ ! (ﬁ)

| 1 b W —Wr
_FGC 1<A\/m))e b/ Wichmax —Wicn (38)

6.3. The Arruda—Boyce non-Gaussian network model

For the Arruda-Boyce constitutive equation for an
average-stretch, full-network of arbitrarily oriented mol-
ecular chains, the total strain energy per unit volume is
given by

_ 8
WSCh = ,LL()Ng (6}, + ln(sinh 6 Cg (39)
where A, is the relative chain stretch defined by
A
Ar _ Z'chain (40)
AL

where A; = /Ny, represents the fully extended chain stretch,
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Ny is the chain number of rigid links, each of length /, Acpain
is the chain deformation that in the affine deformation is
given by

1
Achain = ?] (4 1 )

cg 1s a convenient constant chosen so that the strain energy
vanishes in the undeformed state, and @ defined by (=
L _1(Ar) is the inverse of the Langevin function -.L'(8), thus:

3 = £(8) =coth f — <;) 42)

Note that the strain energy for the Arruda—Boyce model
depends only on the principal invariant I, [13,14].

For this molecular network model, the maximum strain
energy per unit volume at the greatest previous stretch is:

ﬁm X
Wschmax = HolVg <6max/‘{rmax + In <—a —cq

sinh B,
(43)

where

I Imax
2 = 44
rmax 3 N8 ( )

and Brgy = L™ (Armax)
Substitution of Eq. (39) into Eq. (10) and with the aid of

(11), the Cauchy stress—stretch constitutive equation for the
Arruda-Boyce 8-chain network model becomes:

T = —pl +R({|)B (45)
where the material response function is defined by
_ MoB
X)) = 46
(1) 3L (46)

and B = diag{}7, 13, 13} in the principal reference configur-
ation. Using Egs. (7), (17) and (45), the stress—stretch
constitutive relation for a stress-softened Arruda—Boyce
material is given by:

T = (—pl + X, )B)e*b Wachmax —Wsen (47)

Thus, the uniaxial engineering stress—stretch relation for
an Arruda-Boyce stress-softened material is obtained by
using Eqgs. (46) and (47). This yields:

_ A—2A72\ _ —
(@ )5en = 2 1 lu,)( ' )e W )

3

r

in which the relative chain stretch can be obtained from Eqs.
(40) and (41):

1 5 2 172
A = 24+Z 4
= A ( + A) (49)

In equibiaxial extension, the corresponding Arruda—
Boyce engineering stress-softened relation is:

_ 35
<os)8_ch=%,c-lu,)(A AA )e—bﬁ 50

'

where the relative chain stretch is determined by

1 5 1 12
A = e (2,1 +F> (51)

In the case of a pure shear or plane strain compression
deformation state, the compressive engineering stress-
softened is described by

A—273
(05)g—ch = %J’“(A,)( > )e—bm (52)

r

where the relative stretch (44) may be determined from the
following equation:

_ L 2 -2
A,—\/3N8(A +A241) (53)

6.4. The full-network composite strain energy model

Wu and van der Giessen [19,20] proposed an approxi-
mation of their full strain energy network model by
considering a linear combination of the James—Guth 3-
chain and Arruda—Boyce 8-chain models in accordance with
the following equation:

Wi = (I = p)Wien + pWsen (54)
where the parameter p is given by the empirical relation

0.85Amax

W

in which A, =max(A;,4,,A43) and the factor 0.85 was
chosen to provide the best correlation of (54) with numerical
integration of the full network equation, W5, is given by
(30), Wge, by (39) together with (41) or (42), but only for
N3;=Ng=N. Hence, the 8-chain contribution in (54)
becomes increasingly important when A« approaches the
chain locking stretch A; =N of a single chain. Elias-Zifiiga
and Beatty [21] proposed a phenomenological composite
model based on relations modelled after (54) and (55), but
having distinct coefficients that are tied to the ultimate
extensibility of the network:

We =1 = p3_c) Waeh + pg—cu Waen (56)

(55)

In this composite full network model, Elias-Zufiiga and
Beatty relate the coefficient for the 3-chain model
contribution to an average measure of the ultimate chain
stretch that accounts for both chain numbers N; and Ng.
Hence, they defined a somewhat similar constant co-
efficient for the 3-chain constituent as

_ad;
P3—ch \/IV%

where /A;>1 is an average locking stretch defined by

(57)
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N; + N,
A, = /% (58)

and a is a positive scaling constant chosen to best fit
experimental data for a given rubberlike material. It is seen
that the coefficient (57) is thus determined by the fraction
Ng/N3

In the case of the 8-chain network model, Elias-Zifiga
and Beatty defined the 8-chain constituent coefficient as

Doy = by A (Ay)
8—ch —
\/Ng

where b is another positive, experimental scaling constant
and A.,(Ay) is the chain stretch (41) evaluated for A= 4},
in (58), that is,

b
V3

in which the principal stretches A, are ordered so that
A =>A> A3 and we set the greater principal stretch A;=
Ay >1 given by (58).

Thus, with the introduction of (34), the stress com-
ponents of (45) and the use of the constitutive Eq. (18), the
engineering stress—stretch relations for the stress-softened
composite full network material are given by:

(59)

172
A ) =—= T+ 35 +8) |52, (60)

al by A (Ap)
n=(@—7%ymﬁyﬂg%f%mHQ
e VW W 12123 (61)

7. Comparison with experimental data

We now compare our strain energy-based Gaussian and
non-Gaussian constitutive equations for simple uniaxial
extension, equibiaxial extension, and pure shear defor-
mations with experimental data obtained by Mullins and
Tobin [3], Muhr [15], Cheng [16], Johnson and Beatty [17],
and by Chagnon [18].

We begin with Mullins—Tobin data and use the James—
Guth model to determine the material constants ug, N3, and
b in a plot of the engineering stress versus stretch. We
require only three material constants. The shear modulus is
first obtained as uo=0.853 MPa, then the number of chain
links N3=26.91 is determined so that (34) provides a best fit
to the full range of virgin material data shown in Fig. 1.
With these values of the virgin material constants, we
determine the softening parameter value of b=
0.295 (Nm)~ 2 to best fit the stress-softened material
relation (36) to the corresponding Mullins—Tobin stress-
softened material data shown in Fig. 1. The value of Ng [21]
may be obtained for simple extension and pure shear
deformation states by the equation

@ Simple Extension Data
--- neo-Hookean

— Arruda-Boyce

A James-Guth

o, MPa
T T S

Fig. 1. Comparison of theoretical predictions of three molecular network
models with Mullins—Tobin uniaxial extension data for which uo=
0.853 MPa, N3=26.91, Ny=9.12 and b=0.295 (N m) ',

1 2

and for simple compression and equibiaxial deformation
states by

Ng = % (2N3 + ]\}%) (63)
whereas the shear modulus and the stress-softening
parameter for the Arruda—Boyce model retain the same
values. The results predicted by the neo-Hooken Gaussian
model, the James—Guth 3-chain and the Arruda-Boyce 8-
chain relations are shown in Fig. 1. It is seen from Fig. 1 that
both of the non-Gaussian network models compare
favorably with Mullins—Tobin data. The results for the
neo-Hookean, Gaussian network model vary significantly,
particularly at the higher stretch values, where stiffening is
apparent. This condition is also evident in Fig. 2, where
Cheng experimental data for simple uniaxial extension for a
ethylene—propylene—diene terpolymer (EPDM) material is
shown [16]. The material constants for the network models

4 @® Simple Extension Data
--- neo-Hookean

— Arruda-Boyce

Fig. 2. Comparison of theoretical predictions of Arruda—Boyce molecular
network model with Cheng uniaxial extension data for which uy=
0.83 MPa, N;=14.45, Ng=5.01 and h=0.48 (Nm)~ "%,



A. Elias-Zuriiga / Polymer 46 (2005) 3496-3506 3503

are provided by a best-fit analysis of simple uniaxial
extension data of the virgin materials. These are listed in the
figure captions.

Fig. 3 illustrates analytical results of Egs. (27), (36) and
(48) compared to experimental data in simple uniaxial
extension obtain by Muhr in Ref. [15]. Note that the
theoretical engineering stresses of the virgin neo-Hookean
material model described by Eq. (27) show the highest
deviation from experimental data. Our proposed Arruda—
Boyce stress-softening constitutive relation for equibiaxial
deformation (50) is compared further with balloon inflation
experiments BALL 9 and BALL 10 obtained by Johnson
and Beatty in Ref. [17]. We can see from Figs. 4 and 5 that
the theoretical predictions of Arruda—Boyce 8-chain net-
work model provides an excellent fit over the entire data
range.

To further test our phenomenological stress-softening
model, the engineering stress—stretch analytical prediction
of the composite model given by Eq. (61) is compare in Fig.
6 with pure shear dimensionless data by Chagnon [18]. We
may conclude from Fig. 6 that analytical predictions
obtained from Eq. (61) capture the qualitative behavior
but these do not provide a good fit to experimental data over
the entire range. This can be explained by the fact that we
are neglecting the viscoelastic material effects in our
proposed phenomenological stress-softening model.

We emphasize that in all the above deformation states
only three material constants are used in mapping
experimental results.

8. Strain intensity phenomenological model

In this section we compare our proposed energy-based
phenomenological model with the strain-based phenomen-
ological model introduced by Elias-Zuiiiga and Beatty in
Ref. [1] by using simple extension and balloon inflation

8 A
® Simple Extension Data
--- neo-Hookean
— Arruda-Boyce

6 A James-Guth

Fig. 3. Comparison of theoretical predictions of three molecular network
models with Muhr uniaxial extension data for which uo=1.09 MPa, N;=
130.78, Ng=43.65 and b=0.45 (N m)~ "2,

® Equibiaxial Extension Data
— Equibiaxial Extension (Arruda-Boyce) *

Equibiaxial engineering stress (MPa) ¢

0 1 2 3 4 5

Equibiaxial engineering strain €

Fig. 4. Comparison of theoretical predictions of Arruda—Boyce molecular
network model with equibiaxial inflation data (BALL 9) for which py=
63 MPa, Ng=33.11, and 5=0.0245 (N m) "%,

experimental data. We begin with a briefly review of the
strain intensity based phenomenological model.

8.1. Theoretical considerations

To compare the strain-based phenomenological model
with our proposed energy based phenomenological model,
we briefly recall here some of its main characteristics. In the
strain intensity phenomenological model, the virgin
material response during loading for which the maximum
previous strain is its current value, mp.x=m(?), is
characterized by the time independent constitutive Eq.
(10). The stress-softened material response for subsequent
unloading and loading again from an undeformed state, or
from any other elastic point for which m <M, is defined by
the constitutive equation

T = F(m; M)T, (64)

in which © denotes the Cauchy stress in the elastic stress-
softened material and M represents the maximum previous

2.5

® Equibiaxial Extension Data
— Equibiaxial Extension (Arruda-Boyce)

Equibiaxial engineering stress (MPa) ¢

0 1 2 3 4 5
Equibiaxial engineering strain €
Fig. 5. Comparison of theoretical predictions of Arruda—Boyce molecular

network model with equibiaxial inflation data (BALL 10) for which py=
39 MPa, Ng=33.11, and »=0.0245 (N m) "2,
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@ Pure Shear Data °
— Composite Model
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Fig. 6. Comparison of theoretical predictions of the phenomenological
composite network model with pure shear dimensionless data for which we
use the parameter values of uy=0.085, N3=40.03, Ny=13.45, a=b,=1,
and b=1.1.

strain at the point at which the material is unloaded from the
virgin path. The isotropic, scalar-valued damage function
F(m;M), called the softening function at the damage level
Mpax =M on the interval m € [\/gM} satisfies the con-
ditions.
O<FmM)<l, FWM;M)=1 (65)

The softening function F(m;M) is determined by a
constitutive equation that describes the evolution of
microstructural damage that begins immediately upon
deformation from the natural, undistorted state of the virgin
material. The constitutive equation that describes the
softening function of the phenomenological model proposed
by Elias-Zufiiga and Beatty in Ref. [1] is given by

F(m; M) = e~V (66)

where b is a dimensionless positive material constant called
the material softening parameter. Its value F(v/3;M)
characterizes the extent of the damage at M, initiated at
m=/3.

In the course of loading from the natural state, the
maximum value of the strain intensity is its current value,
m(f)=M; and hence (64) reduces to the virgin material
response given by Eq. (10). The material behavior described
by (64) for m <M is elastic for both loading and unloading
until the value of m exceeds its maximum previous value M.
During subsequent loading, the material recalls its inelastic
virgin material response described by (10). By substituting
Eq. (66) into Eq. (64), Elias-Ziiiiga and Beatty obtain the
following stress-softened material model:

T = Toefbﬂ/(Mfm) (67)

in which each member of the family of elastic stress-
softened materials in (67) is generated from a specified
virgin material model in the class (10).

8.2. Numerical results

To assess the accuracy between both phenomenological
models, we shall compare their predicted analytical results
with experimental data by Cheng [16], Chagnon [18], and
Johnson and Beatty [17]. We study the stress-softened
material response predicted by Eq. (18) and Eq. (67) by
using the Arruda-Boyce 8-chain network model. We shall
begin with experimental data by Cheng [16] for simple
extension and plot the corresponding engineering stress-
softened relations described above. The material parameter
values used to simulate predicted results are shown in figure
captions. Fig. 7 shows analytical results for both phenom-
enological models compared to experimental data.

Note that there is a slight difference between both models
and that the strain based phenomenological model tends to
underestimate experimental data for moderate stretches to
about A=2; but both models provide a good fit over the
entire data range. We next show in Figs. 8 and 9 the
comparison of analytical results with balloon inflation data
by Johnson and Beatty. Once more, there is a slight
difference between the phenomenological models but both
predict experimental data fairly well. Finally, we compare
in Fig. 10 analytical predictions with dimensionless uniaxial
extension experimental data by Chagnon [18]. We can see in
Fig. 10, that both phenomenological model results are in
good agreement with these experimental data.

From the above figures, we can conclude that the energy
based phenomenological model tends to fit, in general,
experimental data better that the strain intensity phenom-
enological model and that the difference between their
analytical predictions are more evident for small and
moderate stretch values.

9. Concluding remarks

The success of our proposed energy based

® Simple Extension Data
--- Strain Intensity Arruda-Boyce Model
— Energy-Based Arruda-Boyce Model

Fig. 7. Comparison of theoretical predictions of Arruda—Boyce molecular
stress-softened phenomenological network models with Cheng uniaxial
extension data for which ©y=0.83 MPa, N3=14.45, Ng=5.01, b;=0.42
and b=0.48 (Nm)~ .
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® Equibiaxial Extension Data
--- Strain Intensity Arruda-Boyce Model
— Energy-Based Arruda-Boyce Model D

Equibiaxial engineering stress (MPa) ¢

0 1 2 3 4 5

Equibiaxial engineering strain €

Fig. 8. Comparison of theoretical predictions of Arruda—Boyce molecular
stress-softened phenomenological network models with equibiaxial
inflation data (BALL 9) for which uy=63 MPa, Ng=33.11, b;=0.19 and
5=0.0245 (N m)~ "

phenomenological stress-softening material model (18) in
characterizing the Mullins effect is shown to be very good in
modeling the uniaxial extension data by Mullins and Tobin
[3], Muhr [15], Cheng [16], and the balloon inflation data by
Johnson and Beatty [17]. In the case of pure shear
experimental data [18], our model fails in predicting with
precision the material stress-softened behavior but this can
be explained by the fact that our stress-softened phenom-
enological model neglects the viscoelastic material effects.
However, our model requires determination of only three
material constants: the shear modulus ug, the model specific
molecular chain number of links N, and the softening rate
parameter b. Moreover, comparison of our model developed
in this paper with the strain based phenomenological model
described by Eq. (67) shows that the energy based
phenomenological model is slightly superior in following
experimental data.

25 ® Equibiaxial Extension Data
--- Strain Intensity Arruda-Boyce Model
— Energy-Based Arruda-Boyce Model

Equibiaxial engineering stress (MPa)

0 1 2 3 4 5

Equibiaxial engineering strain €

Fig. 9. Comparison of theoretical predictions of Arruda—Boyce molecular
stress-softened phenomenological network models with equibiaxial
inflation data (BALL 10) for which uo=39 MPa, Ng=33.11, b,=0.19
and 5=0.0245 (N m)~ "~

® Simple Extension Data
--- Strain Intensity Arruda-Boyce Model .
— Energy-Based Arruda-Boyce Model

N
+ o)} oo

<
)

Dimensionless engineering stress, ¢

Fig. 10. Comparison of theoretical predictions of the phenomenological
network models with uniaxial extension dimensionless data for which the
material parameter values are: uo=0.085, Ng=19.5, by;=1.25 and »=0.33.

Finally, it is evident that our energy-based phenomen-
ological model may be applied to three-dimensional
deformation states since, the damage function is controlled
by the strain energy associated with the primary defor-
mation and not just by the specific deformation from which
it is calculated. Besides, the extend of the damage sustained
by our energy based phenomenological material model
depends on the point, where the virgin material is unloaded
from a state of maximum previous strain W,x.
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