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Departamento de Ingenierı́a Mecánica, Instituto Tecnológico y de Estudios Superiores de Monterrey, E. Garza Sada 2501 Sur,

C.P., 64849 Monterrey, NL, México
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Abstract

A phenomenological energy-based model for stress-softening of isotropic, incompressible hyperelastic rubberlike materials is derived

here. In this model, the microstructural damage is characterized by an exponential softening function that depends on the current magnitude

of the strain–energy function and its maximum previous value in a deformation of the virgin material. Theoretical models are presented for

uniaxial, equibiaxial and pure shear deformations by using Gaussian and non-Gaussian material molecular network models. The accuracy of

the resulting constitutive equations is demonstrated on uniaxial, equibiaxial and pure shear experimental data provided in the literature.

Comparisons between the energy-based model and the strain intensity based phenomenological model described in [Elı́as-Zúñiga A, Beatty

MF. ZAMP 2002;53:794–814. [1]] show that the model developed here is slightly superior in following experimental data.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Rubberlike materials are known to exhibit a highly non-

linear elastic behavior under static load, a viscoelastic

behavior including hysteresis under cyclic loading, and a

stress-softening phenomenon known as the Mullins effect.

Since, the modelling of the physical behavior of these

materials is complex, we only considered here static

behavior and focus on the characterization of Mullins effect

of rubberlike materials under several deformation states. An

excellent overview of both experimental and theoretical

aspects of Mullins effect is provided in Refs. [2–6]. There

are also many studies concerning time-independent con-

stitutive equations to characterize aspects of phenomen-

ological descriptions of Mullins phenomenon based on

strain–energy functions. Some representative works are

papers written by De Souza Neto, Perić and Owen [7],

Ogden and Roxburgh [6], Holzapfel, Stadler and Ogden [8],

Dorfmann and Ogden [9], and Horgan et al. [10]. These
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publications focus on phenomenological strain–energy

functions that depend on a damage parameter associated

with the maximum energy on the primary loading path

rather than the specific deformation state that governs the

unloading response.

The aim of this paper is to introduce a new phenomen-

ological network model for the Mullins effect based on

strain–energy functions of isotropic, incompressible hyper-

elastic, time independent rubberlike materials. This theor-

etical damage model is developed in order to provide a

description of an idealized form of the Mullins effect for

various deformation states. It is important to point out that

this phenomenological model closely parallels the strain-

based model developed by Elı́as-Zúñiga and Beatty [1] in

which the determination of only two material constants for a

neo-Hookean material model: the shear modulus m0, and the

softening rate parameter b, and three constants for non-

Gaussian molecular network models: m0, b, and the model

specific molecular chain number of links N are required.

The paper is organized as follows. We begin in Section 2

with a brief review of the relations for finite deformations of

an incompressible elastic material. In Section 3, we present

a brief description of the Ogden and Roxburgh energy-based

phenomenological approach to model Mullins effect [6]. In
Polymer 46 (2005) 3496–3506
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Section 4, we present a new constitutive model for stress-

softening for which the damage function depends on the

magnitude of the energy at a material point; and we

introduce in Section 5 a specific damage function that is

used in a great variety of deformation states. We then apply

the Gaussian, neo-Hookean and non-Gaussian, James–Guth

[12] and Arruda–Boyce [13] molecular network models as

well as the phenomenological full-network composite

model to derive in Section 6 corresponding virgin material

and stress-softened material constitutive equations. Results

demonstrating the effects of stress-softening for these

molecular network models in uniaxial extension, pure

shear and equibiaxial deformation are compared in Section

7 with experimental data by Mullins and Tobin [3], Muhr

[15], Cheng [16], Johnson and Beatty [17] and by Chagnon

[18]. It is shown for these data that our phenomenological

energy-based stress-softening material model predicts with

great accuracy the Mullins effect in rubberlike materials. In

Section 8, we briefly review the strain-based phenomen-

ological model developed by Elı́as-Zúñiga and Beatty [1]

for stress-softening in elastomers. Finally, we compare in

Section 9 our proposed energy-based model with the strain-

based phenomenological model by applying the correspond-

ing virgin material and stress-softened material constitutive

equations with data by Cheng [16], Johnson and Beatty [17]

and by Chagnon [18]. It is shown for these data, that our

energy-based model is slightly superior to the strain-based

model in following experimental data.
2. Preliminaries

We recall briefly some essential relations for finite

deformations of an incompressible elastic material. Let us

consider a material particle at the place XZXkek in an

initially undeformed reference configuration of a body.

When subjected to a prescribed deformation, the particle at

X moves to the place xZxkek in the current configuration of

the body in a common rectangular Cartesian frame fZ{O;

ek} with origin O and orthonormal basis ek. An isochoric

deformation is described by

x1 Z l1X1; x2 Z l2X2; x3 Z l3X3 (1)

in which li denote the principal stretches in f. The Cauchy–

Green deformation tensor BhFFT has the form

BZ l21e11 Cl22e22 Cl23e33 (2)

where ejkhej5ek, ei are the associated orthonormal

principal directions, and F is the usual deformation gradient.

In the undistorted state FZ1, and mZ
ffiffiffi
3

p
; otherwise, mOffiffiffi

3
p

for all isochoric deformations [5]. The magnitude of the

strain at a material point X, also called the strain intensity

and denoted by m, is defined by m ¼
ffiffiffiffiffiffiffiffiffi
B,B

p
¼

ffiffiffiffiffiffiffiffiffi
trB2

p
, where

tr denotes the trace operation. The principal invariants Ik of

B are defined by
I1 Z tr B; I2 Z
1

2
I21 K trðB2Þ
� �

; I3 Z det B (3)

so the magnitude m of B as a function of the invariants is

given by

mZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 K2I2

q
(4)

We note that mR
ffiffiffi
3

p
for all l, equality holding when and

only when lZ1, the undeformed state. Also, for all

deformations of an incompressible material we have I3h1.
3. Review of Ogden–Roxburgh pseudo-elastic model

Ogden and Roxburgh [6] proposed a phenomenological

pseudo-elastic model to characterize Mullins effect in filled

rubber. They assumed that on the first loading path its

stress–strain behavior may be described as a function of the

principal stretches by

Ti Z li
v �W

vli
ðl1; l2; l3;hÞKp; iZ 1; 2; 3; no sum (5)

in which the strain–energy function W is related to the

pseudo-energy function �W via

�Wðl1; l2;hÞZ hWðl1; l2ÞCfðhÞ (6)

where h is an additional scalar continuous damage

parameter that takes the value unity on the virgin path,

f(h) is a smooth damage function with f(1)Z0, and

W(l1,l2) is the strain–energy function that characterizes any

primary loading path. On subsequent loading cycles, h

satisfies 0!h%1 and attains its unit value only if W(l1,

l2)RWmax(l1m,l2m), where Wmax, l1m and l2m correspond

to the previous maximum energy state. Ogden and

Roxburgh have shown that the damage function satisfies

the relation

Kf0ðhÞZWðl1; l2Þ (7)

which defines h in terms of the deformation state as well as

on the specific forms of W(l1,l2) and f(h) used. Also,

Ogden and Roxburgh [6] in their pseudo-elasticity model

defined the dissipation function f(h) to have the form:

Kf0ðhÞZm1erf
K1ðrðhK1ÞÞCWmax (8)

where m1 and r are positive material constant parameters

and erfK1( ) is the inverse of the error function. They

applied it to characterize Mullins effect in simple uniaxial

extension data obtained fromMullins and Tobin (1957) with

great accuracy. Recently, Dorfmann and Ogden [9] selected

a different damage function given by:

Kf0ðhÞZm1tanh
K1ðrðhK1ÞÞCWmax (9)

and they used it to characterize loading, partial unloading

and reloading of a particle-reinforced rubber with hysteretic

response [9]. We now turn to the development of a new
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phenomenological energy-based model to describe stress-

softening effect in rubberlike materials.
4. A new phenomenological energy-based model for

stress-softening

To characterize the virgin material response of an

incompressible and isotropic elastic material, we consider

a time independent constitutive equation of the form

T0 ZKp1Ca1ðI1; I2ÞBCaK1ðI1; I2ÞB
K1 (10)

where T0 is the Cauchy stress, p is an undetermined

pressure, and aGZaGðI1; I2Þ, GZ1, K1, denote the virgin

material response functions that can be determined by a

strain–energy function WZŴðI1; I2Þ, per unit reference

volume, in accordance with

a1 Z 2W1; aK1 ZK2W2 (11)

wherein WahvŴ=vIa [5]. During loading of the virgin

material, the maximum previous strain–energy is its current

value, WmaxZW. In addition and for many standard forms

of strain–energy functions, W is a monotonic increasing

function of the amount of stretch from the undeformed state.

The phenomenological model proposed here is based on

the assumption that microstructural material damage is

characterized by a certain isotropic and monotonic increas-

ing function J(W;Wmax) that depends on the material

strain–energy density W and satisfies the conditions

0!JðW;WmaxÞ!1; JðWmax;WmaxÞZ 1 (12)

whereWmax represents the maximum previous strain energy

density at the point at which the material is unloaded from

the virgin path. The softening function J(W;Wmax) is

determined by a constitutive equation that describes the

evolution of microstructural change that begins immedi-

ately upon deformation from the natural, undistorted state of

the virgin material. We assume thatJ(W;Wmax) is a positive

monotonic increasing function of the strain intensity on the

interval m2
ffiffiffi
3

p
;M

� �
and that it depends on the different

forms of strain–energy functions. Thus, our proposed model

can be considered as a pseudo-elastic model [6].

If we let mmaxZM be the amount of stretch at the point at

which the material is unloaded and fix the maximum

previous strain energy atWZWmax then, the stress-softened

material response for subsequent unloading and loading

again from an undeformed state, or from any other elastic

point for which W!Wmax is defined by the time-

independent constitutive equation

tZJðW;WmaxÞT0 (13)

where t denotes the Cauchy stress in the stress-softened

material. It is evident by substituting (6) in (5) that our

softening function J(W;Wmax) is identical to Ogden–

Roxburgh damage parameter h defined in Section 3, i.e.
JðW;WmaxÞZ h (14)

and hence, we may use Ogden–Roxburgh pseudo-elastic

theory to determine this function. We shall return to this

later.

Notice from Eq. (13) that tZT0Z0, when and only

when mZ
ffiffiffi
3

p
. Also, the virgin and stress-softened material

response values coincide at each softening point for which

WZWmax and mmaxZM. The material behavior described

by (13) for W%Wmax is ideally elastic for both loading and

unloading as long as the value of W does not exceed its

maximum previous value Wmax. Thereafter, the material

recalls its virgin material response described by (10).

In accordance with (12) and (13), the ratios of the non-

trivial physical stress components T0ij in the virgin material

to the corresponding non-trivial physical components tij in

the stress-softened material, for a given deformation state,

are determined by the inverse of the softening function

alone

T0ij

tij
Z

1

JðW;WmaxÞ
R1; i; jZ 1; 2; 3; no sum (15)

the equality holding when and only whenWZWmax. In sum,

for a given isochoric deformation B, the magnitude of the

stress component in the stress-softened material is smaller

than the magnitude of the non-trivial corresponding stress

component in the virgin material.

We shall see in Section 5 how to obtain a damage

function f(h) that depends on only one positive parameter

called the material softening parameter.
5. A stress-softening material model

In order to determine the softening functionJ(W;Wmax),

we use the Ogden–Roxburgh [6] pseudo-elastic model and

select a damage function f(h) of the form:

Kf0ðhÞZK1
1

b
ln h

� �1=n

CWmax (16)

where b is a positive material constant, named the softening

parameter and n is a specified positive constant chosen to

best fit data for a given rubberlike material. Henceforward,

we consider the value of nZ1/2. On substitution of Eq. (7)

into Eq. (16) and after a little algebraic manipulation, we

obtain the expression for the scalar continuous damage

parameter h:

hhJðW;WmaxÞZ eKb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWmaxKWÞ

p
(17)

Since, W(l1,l2)%Wmax, it follows that h%1 with equality

holding when and only when W(l1,l2)ZWmax.

Substitution of Eq. (11) into Eq. (10) using the general

class (13) and recalling Eq. (14), we thus obtain the

following simplified Mullins material model:
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tZT0e
Kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �WmaxK �WÞ

p

(18)

in which each member of the family of elastic stress-

softened materials (18), characterized by the previous

maximum strain energy density Wmax, is generated from a

specified virgin material model in the class (10). Note that

during primary loading of the virgin material, the maximum

previous strain energy density is its current value and hence

Eq. (18) yields tZT0, the virgin material response. When

the virgin material is unloaded from a state of maximum

previous strain for which W(l1,l2) is either fixed at its

maximum previous value, W(l1,l2)ZWmax, or it is

decreased the stress-softened material response follows

(18). In fact, as long as W(l1,l2)!Wmax the material

response is ideally elastic for decreasing as well as for

increasing strain. When the material is further loaded on

subsequent second deformation of the stress-softening

material from its maximum previous strain at the softening

point, the response is again described by the virgin

constitutive Eq. (10).

Integration of Eq. (16) with respect to h yields the

explicit expression for the damage function f(h):

fðhÞZ

ðh
1

ln h

b

� �2

KWmax

� �
dh

Z
2

b2
h 1K ln hC

1

2
fln hg2

� �
K1

� �

Cð1KhÞWmax (19)

On substitution of Eq. (17) into Eq. (19), we obtain the

dependence of f on Wmax:

fZ
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWmaxKWÞ

p

b2
2Kb2WC2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWmax KWÞ

p�

Ceb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWmaxKWÞ

p
ðb2Wmax K2Þ

	
(20)

We may conclude from Eq. (20) that the damage function f

depends on the point, where the virgin material is unloaded

from a state of maximum previous strain Wmax.
6. Material models

To illustrate the application of the stress-softening

material model given by Eq. (18), we consider the neo-

Hookean Gaussian virgin material and the classical James–

Guth 3-chain, Arruda–Boyce 8-chain, and the full network

composite non-Gaussian virgin material network models1.
1 Note that in all non-Gaussian material network models reviewed here,

the inverse Langevin function can be approximated by bZ3lr/(1Klr
3), an

empirical estimate that exhibits very good comparison with the exact

numerical values of bZLK1ðlrÞ [11].
We shall begin with the neo-Hookean virgin material

model.
6.1. A neo-Hookean material

A neo-Hookean material is described by a Gaussian

strain–energy function of the form

W Z
m0

2
ðI1 K3Þ (21)

in which m0 denotes the shear modulus in the undeformed,

natural state of the virgin material. The corresponding

maximum strain energy at the greatest previous stretch prior

to unloading is given by

Wmax Z
m0

2
ðI1max K3Þ (22)

where

I1max Z l
2
1max Cl

2
2max Cl

2
3max (23)

and (l1max,l2max, l3max) are the values of (l1,l2,l3) at a point

at which unloading begins.

Using Eqs. (10) and (11), the virgin material constitutive

equation becomes

T0 ZKp1Cm0B (24)

In view of (18) and (24), the stress–stretch relations for a

stress-softening neo-Hookean material are given by:

tZ ðKp1Cm0BÞe
Kb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmaxKW

p

(25)

Now consider a simple uniaxial extension for which the

Cauchy stress in the virgin material is given by T011ZT, all

other components T0jkZ0. The equilibrium equations are

satisfied for constant p. The corresponding uniaxial stretch

is denoted by l1Zl, and the incompressibility condition

l1l2l3Z1 requires that l2Zl3Z1/l. Then our constitutive

Eqs. (24) and (25) yield the following uniaxial stress–stretch

relation for a stress-softened neo-Hookean material:

tZm0 l2 K
1

l

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmaxKW

p

(26)

The corresponding uniaxial engineering stress is denoted

ssZt/l. Hence, by (26),

ss Zm0 lK
1

l2

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmaxKW

p

(27)

A similar relation may be obtained for an equibiaxial

homogeneous deformation for which l1Zl2Zl, and l3Z
lK2. In this case, the equibiaxial engineering stress-softened

neo-Hookean material is described by

ss Zm0 lK
1

l5

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmaxKW

p

(28)

A pure shear or a plane strain compression is a

homogeneous deformation for which l1Zl, l2Z1, and

l3ZlK1. Here, the pure shear engineering stress-softened
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neo-Hookean material model is described by

ss Zm0 lK
1

l3

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmaxKW

p

(29)
6.2. The James–Guth virgin material model

The strain energy WZŴðl1; l2; l3Þ per unit volume for

the three-chain, James–Guth virgin material model [12] may

be written as

W3ch Z
nkQ

3
N3

X3
jZ1

bjljr C ln
bj

sinh bj

� �� �
Kc3 (30)

where k is the Boltzmann constant, n denotes the chain

density per unit volume,Q is the absolute temperature, N3 is

the number of rigid links each of length l in a molecular

chain between cross-links of a molecular network consisting

of three identical, orthogonal chains that have the same

initial root-mean square (rms) chain vector length

r0Z
ffiffiffiffiffiffi
N3

p
l. The constant c3 is chosen so that the strain

energy vanishes in the natural, undeformed state; and bjh
LK1ðljrÞ is the inverse of the Langevin function

LðbjÞhcoth bjK ð1=bjÞ. The current chain vector length

in an affine deformation is defined by rjchainhljr0, where lj
represents the macroscopic principal stretch of the con-

tinuum along the jth principal axis. The corresponding jth

relative chain stretch ljr is defined by

ljrh
ljchain

lL
Z

ljffiffiffiffiffiffi
N3

p ; jZ 1; 2; 3; ðno sumÞ (31)

in which ljchainhrjchain/r0Zlj defines the jth current chain

stretch in the affine deformation, and lLhrL/r0, with

rLhN3l, is the locking chain stretch.

If (l1max,l2max,l3max) are the values of (l1,l2,l3) at which

unloading begins, then the maximum strain energy at the

greatest previous stretch is given by:

W3chmax Z
nkQ

3
N3

X3
jZ1

bjmaxljrmax C ln
bjmax

sinh bjmax

� �� �

Kc3

(32)

where

ljrmax Z
ljmaxffiffiffiffiffiffi
N3

p ; jZ 1; 2; 3; ðno sumÞ (33)

and bjmaxhLK1ðljrmaxÞ.

Substitution of (30) into (10) and by using (11), we

obtain the constitutive equation for the non-Gaussian,

James–Guth virgin material model in the principal reference

system:

T0j ZKpC
m0

3
N3ljrL

K1ðlrjÞ;

jZ 1; 2; 3; ðno sumÞ (34)
wherein m0 represents the shear modulus in the undeformed

state and it is given by m0hnkQ.

The James–Guth stress-softened material response in the

same principal reference system, for exponential softening,

is then provided by use of (34) in (18):

tj Z KpC
m0

3
N3ljrL

K1ðljrÞ
� 	

eKb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3chmaxKW3ch

p
; j

Z 1; 2; 3; ðno sumÞ (35)

Application of (34) and (35) in the manner described earlier

for equilibrium of the neo-Hookean material, yields the

following simple uniaxial engineering stress-softened

relation for a James–Guth material:

ðssÞ3�ch Z
m0

ffiffiffiffiffiffi
N3

p

3
LK1 lffiffiffiffiffiffi

N3

p

� ��

K
1

l3=2
LK1 1ffiffiffiffiffiffiffiffi

lN3

p
 !!

eKb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3chmaxKW3ch

p
(36)

for which l1rZl=
ffiffiffiffiffiffi
N3

p
, l2rZl3rZ1=

ffiffiffiffiffiffiffiffi
lN3

p
.

In the case of equibiaxial extension for which

l1rZl2rZl=
ffiffiffiffiffiffi
N3

p
, and l3rZlK2=

ffiffiffiffiffiffi
N3

p
the equibiaxial

engineering stress-softened relation is

ðssÞ3�ch Z
m0

ffiffiffiffiffiffi
N3

p

3
LK1 lffiffiffiffiffiffi

N3

p

� ��

K
1

l3
LK1 1

l2
ffiffiffiffiffiffi
N3

p

� ��
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3chmaxKW3ch

p
(37)

For a pure shear or plane strain compression deformation

state, the corresponding compressive engineering stress is

s1ZT01/l, the restraining stress is s2ZT02, and the free

surface stress is s3Z0 and hence, the engineering stress-

softened equation is given by

ðssÞ3�ch Z
m0

ffiffiffiffiffiffi
N3

p

3
LK1 lffiffiffiffiffiffi

N3

p

� ��

K
1

l2
LK1 1

l
ffiffiffiffiffiffi
N3

p

� ��
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3chmaxKW3ch

p
(38)
6.3. The Arruda–Boyce non-Gaussian network model

For the Arruda–Boyce constitutive equation for an

average-stretch, full-network of arbitrarily oriented mol-

ecular chains, the total strain energy per unit volume is

given by

W8ch Zm0N8 blr C ln
b

sinh b

� �� �
Kc8 (39)

where lr is the relative chain stretch defined by

lr Z
lchain

lL
(40)

where lLZ
ffiffiffiffiffiffi
N8

p
, represents the fully extended chain stretch,
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N8 is the chain number of rigid links, each of length l, lchain
is the chain deformation that in the affine deformation is

given by

lchainh

ffiffiffiffi
I1
3

r
(41)

c8 is a convenient constant chosen so that the strain energy

vanishes in the undeformed state, and b defined by bh
LK1ðlrÞ is the inverse of the Langevin function LðbÞ, thus:

lr ZLðbÞhcoth bK
1

b

� �
(42)

Note that the strain energy for the Arruda–Boyce model

depends only on the principal invariant I1 [13,14].

For this molecular network model, the maximum strain

energy per unit volume at the greatest previous stretch is:

W8chmax Zm0N8 bmaxlrmax C ln
bmax

sinh bmax

� �� �
Kc8

(43)

where

lrmax Z

ffiffiffiffiffiffiffiffiffiffi
I1max

3N8

s
(44)

and bmaxhLK1ðlrmaxÞ

Substitution of Eq. (39) into Eq. (10) and with the aid of

(11), the Cauchy stress–stretch constitutive equation for the

Arruda–Boyce 8-chain network model becomes:

TZKp1CaðI1ÞB (45)

where the material response function is defined by

aðI1Þh
m0b

3lr
(46)

and BZdiagfl21; l
2
2; l

2
3g in the principal reference configur-

ation. Using Eqs. (7), (17) and (45), the stress–stretch

constitutive relation for a stress-softened Arruda–Boyce

material is given by:

tZ ðKp1CaðI1ÞBÞe
Kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W8chmaxKW8ch

p
(47)

Thus, the uniaxial engineering stress–stretch relation for

an Arruda–Boyce stress-softened material is obtained by

using Eqs. (46) and (47). This yields:

ðssÞ8�ch Z
m0

3
LK1ðlrÞ

lKlK2

lr

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W8chmaxKW8ch

p
(48)

in which the relative chain stretch can be obtained from Eqs.

(40) and (41):

lr Z
1ffiffiffiffiffiffiffiffi
3N8

p l2 C
2

l

� �1=2

(49)

In equibiaxial extension, the corresponding Arruda–

Boyce engineering stress-softened relation is:
ðssÞ8�ch Z
m0

3
LK1ðlrÞ

lKlK5

lr

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W8chmaxKW8ch

p
(50)

where the relative chain stretch is determined by

lr Z
1ffiffiffiffiffiffiffiffi
3N8

p 2l2 C
1

l4

� �1=2

(51)

In the case of a pure shear or plane strain compression

deformation state, the compressive engineering stress-

softened is described by

ðssÞ8�ch Z
m0

3
LK1ðlrÞ

lKlK3

lr

� �
eKb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W8chmaxKW8ch

p
(52)

where the relative stretch (44) may be determined from the

following equation:

lr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3N8

ðl2 ClK2 C1Þ

s
(53)
6.4. The full-network composite strain energy model

Wu and van der Giessen [19,20] proposed an approxi-

mation of their full strain energy network model by

considering a linear combination of the James–Guth 3-

chain and Arruda–Boyce 8-chain models in accordance with

the following equation:

Wfull Z ð1KrÞW3ch CrW8ch (54)

where the parameter r is given by the empirical relation

rZ
0:85lmaxffiffiffiffi

N
p (55)

in which lmaxZmax(l1,l2,l3) and the factor 0.85 was

chosen to provide the best correlation of (54) with numerical

integration of the full network equation, W3ch is given by

(30), W8ch by (39) together with (41) or (42), but only for

N3ZN8ZN. Hence, the 8-chain contribution in (54)

becomes increasingly important when lmax approaches the

chain locking stretch lLZN of a single chain. Elı́as-Zúñiga

and Beatty [21] proposed a phenomenological composite

model based on relations modelled after (54) and (55), but

having distinct coefficients that are tied to the ultimate

extensibility of the network:

Wc Z ð1Kr3�chÞW3ch Cr8�chW8ch (56)

In this composite full network model, Elı́as-Zúñiga and

Beatty relate the coefficient for the 3-chain model

contribution to an average measure of the ultimate chain

stretch that accounts for both chain numbers N3 and N8.

Hence, they defined a somewhat similar constant co-

efficient for the 3-chain constituent as

r3�ch Z
aLLffiffiffiffiffiffi
N3

p (57)

where LLR1 is an average locking stretch defined by



Fig. 1. Comparison of theoretical predictions of three molecular network

models with Mullins–Tobin uniaxial extension data for which m0Z
0.853 MPa, N3Z26.91, N8Z9.12 and bZ0.295 (N m)K1/2.
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LL Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N3 CN8

2

r
(58)

and a is a positive scaling constant chosen to best fit

experimental data for a given rubberlike material. It is seen

that the coefficient (57) is thus determined by the fraction

N8/N3.

In the case of the 8-chain network model, Elı́as-Zúñiga

and Beatty defined the 8-chain constituent coefficient as

r8�ch Z
b1LchðLLÞffiffiffiffiffiffi

N8

p (59)

where b1 is another positive, experimental scaling constant

and Lch(LL) is the chain stretch (41) evaluated for lmaxZLL

in (58), that is,

LchðLLÞZ
1ffiffiffi
3

p l21 Cl22 Cl23

 �1=2

l1ZLL

�� (60)

in which the principal stretches lk are ordered so that

l1Rl2Rl3 and we set the greater principal stretch l1Z
LLO1 given by (58).

Thus, with the introduction of (34), the stress com-

ponents of (45) and the use of the constitutive Eq. (18), the

engineering stress–stretch relations for the stress-softened

composite full network material are given by:

ti Z 1K
aLLffiffiffiffiffiffi
N3

p

� �
ðTiÞ3�ch C

b1LchðLLÞffiffiffiffiffiffi
N8

p ðTiÞ8�ch

� �

!eKb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WcmaxKWc

p

; iZ 1; 2; 3 (61)
Fig. 2. Comparison of theoretical predictions of Arruda–Boyce molecular

network model with Cheng uniaxial extension data for which m0Z
0.83 MPa, N3Z14.45, N8Z5.01 and bZ0.48 (N m)K1/2.
7. Comparison with experimental data

We now compare our strain energy-based Gaussian and

non-Gaussian constitutive equations for simple uniaxial

extension, equibiaxial extension, and pure shear defor-

mations with experimental data obtained by Mullins and

Tobin [3], Muhr [15], Cheng [16], Johnson and Beatty [17],

and by Chagnon [18].

We begin with Mullins–Tobin data and use the James–

Guth model to determine the material constants m0, N3, and

b in a plot of the engineering stress versus stretch. We

require only three material constants. The shear modulus is

first obtained as m0Z0.853 MPa, then the number of chain

links N3Z26.91 is determined so that (34) provides a best fit

to the full range of virgin material data shown in Fig. 1.

With these values of the virgin material constants, we

determine the softening parameter value of bZ
0.295 (N m)K1/2 to best fit the stress-softened material

relation (36) to the corresponding Mullins–Tobin stress-

softened material data shown in Fig. 1. The value of N8 [21]

may be obtained for simple extension and pure shear

deformation states by the equation
N8 Z
1

3
N3 C

2ffiffiffiffiffiffi
N3

p

� �
(62)

and for simple compression and equibiaxial deformation

states by

N8 Z
1

3
2N3 C

1

N2
3

� �
(63)

whereas the shear modulus and the stress-softening

parameter for the Arruda–Boyce model retain the same

values. The results predicted by the neo-Hooken Gaussian

model, the James–Guth 3-chain and the Arruda–Boyce 8-

chain relations are shown in Fig. 1. It is seen from Fig. 1 that

both of the non-Gaussian network models compare

favorably with Mullins–Tobin data. The results for the

neo-Hookean, Gaussian network model vary significantly,

particularly at the higher stretch values, where stiffening is

apparent. This condition is also evident in Fig. 2, where

Cheng experimental data for simple uniaxial extension for a

ethylene–propylene–diene terpolymer (EPDM) material is

shown [16]. The material constants for the network models



Fig. 4. Comparison of theoretical predictions of Arruda–Boyce molecular

network model with equibiaxial inflation data (BALL 9) for which m0Z
63 MPa, N8Z33.11, and bZ0.0245 (N m)K1/2.
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are provided by a best-fit analysis of simple uniaxial

extension data of the virgin materials. These are listed in the

figure captions.

Fig. 3 illustrates analytical results of Eqs. (27), (36) and

(48) compared to experimental data in simple uniaxial

extension obtain by Muhr in Ref. [15]. Note that the

theoretical engineering stresses of the virgin neo-Hookean

material model described by Eq. (27) show the highest

deviation from experimental data. Our proposed Arruda–

Boyce stress-softening constitutive relation for equibiaxial

deformation (50) is compared further with balloon inflation

experiments BALL 9 and BALL 10 obtained by Johnson

and Beatty in Ref. [17]. We can see from Figs. 4 and 5 that

the theoretical predictions of Arruda–Boyce 8-chain net-

work model provides an excellent fit over the entire data

range.

To further test our phenomenological stress-softening

model, the engineering stress–stretch analytical prediction

of the composite model given by Eq. (61) is compare in Fig.

6 with pure shear dimensionless data by Chagnon [18]. We

may conclude from Fig. 6 that analytical predictions

obtained from Eq. (61) capture the qualitative behavior

but these do not provide a good fit to experimental data over

the entire range. This can be explained by the fact that we

are neglecting the viscoelastic material effects in our

proposed phenomenological stress-softening model.

We emphasize that in all the above deformation states

only three material constants are used in mapping

experimental results.
8. Strain intensity phenomenological model

In this section we compare our proposed energy-based

phenomenological model with the strain-based phenomen-

ological model introduced by Elı́as-Zúñiga and Beatty in

Ref. [1] by using simple extension and balloon inflation
Fig. 3. Comparison of theoretical predictions of three molecular network

models with Muhr uniaxial extension data for which m0Z1.09 MPa, N3Z
130.78, N8Z43.65 and bZ0.45 (N m)K1/2.
experimental data. We begin with a briefly review of the

strain intensity based phenomenological model.
8.1. Theoretical considerations

To compare the strain-based phenomenological model

with our proposed energy based phenomenological model,

we briefly recall here some of its main characteristics. In the

strain intensity phenomenological model, the virgin

material response during loading for which the maximum

previous strain is its current value, mmaxZm(t), is

characterized by the time independent constitutive Eq.

(10). The stress-softened material response for subsequent

unloading and loading again from an undeformed state, or

from any other elastic point for which m!M, is defined by

the constitutive equation

tZFðm;MÞT0 (64)

in which t denotes the Cauchy stress in the elastic stress-

softened material and M represents the maximum previous
Fig. 5. Comparison of theoretical predictions of Arruda–Boyce molecular

network model with equibiaxial inflation data (BALL 10) for which m0Z
39 MPa, N8Z33.11, and bZ0.0245 (N m)K1/2.



Fig. 6. Comparison of theoretical predictions of the phenomenological

composite network model with pure shear dimensionless data for which we

use the parameter values of m0Z0.085, N3Z40.03, N8Z13.45, aZb1Z1,

and bZ1.1.

Fig. 7. Comparison of theoretical predictions of Arruda–Boyce molecular

stress-softened phenomenological network models with Cheng uniaxial

extension data for which m0Z0.83 MPa, N3Z14.45, N8Z5.01, bsZ0.42

and bZ0.48 (N m)K1/2.

A. Elı́as-Zúñiga / Polymer 46 (2005) 3496–35063504
strain at the point at which the material is unloaded from the

virgin path. The isotropic, scalar-valued damage function

F(m;M), called the softening function at the damage level

mmaxZM on the interval m2
ffiffiffi
3

p
;M

� �
satisfies the con-

ditions.

0!Fðm;MÞ!1; FðM;MÞZ 1 (65)

The softening function F(m;M) is determined by a

constitutive equation that describes the evolution of

microstructural damage that begins immediately upon

deformation from the natural, undistorted state of the virgin

material. The constitutive equation that describes the

softening function of the phenomenological model proposed

by Elı́as-Zúñiga and Beatty in Ref. [1] is given by

Fðm;MÞZ eKbs
ffiffiffiffiffiffiffiffiffiffiffi
ðMKmÞ

p

(66)

where bs is a dimensionless positive material constant called

the material softening parameter. Its value F
ffiffiffi
3

p
;M


 �
characterizes the extent of the damage at M, initiated at

mZ
ffiffiffi
3

p
.

In the course of loading from the natural state, the

maximum value of the strain intensity is its current value,

m(t)ZM; and hence (64) reduces to the virgin material

response given by Eq. (10). The material behavior described

by (64) for m%M is elastic for both loading and unloading

until the value of m exceeds its maximum previous valueM.

During subsequent loading, the material recalls its inelastic

virgin material response described by (10). By substituting

Eq. (66) into Eq. (64), Elı́as-Zúñiga and Beatty obtain the

following stress-softened material model:

tZT0e
Kbs

ffiffiffiffiffiffiffiffiffiffiffi
ðMKmÞ

p

(67)

in which each member of the family of elastic stress-

softened materials in (67) is generated from a specified

virgin material model in the class (10).
8.2. Numerical results

To assess the accuracy between both phenomenological

models, we shall compare their predicted analytical results

with experimental data by Cheng [16], Chagnon [18], and

Johnson and Beatty [17]. We study the stress-softened

material response predicted by Eq. (18) and Eq. (67) by

using the Arruda–Boyce 8-chain network model. We shall

begin with experimental data by Cheng [16] for simple

extension and plot the corresponding engineering stress-

softened relations described above. The material parameter

values used to simulate predicted results are shown in figure

captions. Fig. 7 shows analytical results for both phenom-

enological models compared to experimental data.

Note that there is a slight difference between both models

and that the strain based phenomenological model tends to

underestimate experimental data for moderate stretches to

about lZ2; but both models provide a good fit over the

entire data range. We next show in Figs. 8 and 9 the

comparison of analytical results with balloon inflation data

by Johnson and Beatty. Once more, there is a slight

difference between the phenomenological models but both

predict experimental data fairly well. Finally, we compare

in Fig. 10 analytical predictions with dimensionless uniaxial

extension experimental data by Chagnon [18]. We can see in

Fig. 10, that both phenomenological model results are in

good agreement with these experimental data.

From the above figures, we can conclude that the energy

based phenomenological model tends to fit, in general,

experimental data better that the strain intensity phenom-

enological model and that the difference between their

analytical predictions are more evident for small and

moderate stretch values.
9. Concluding remarks

The success of our proposed energy based



Fig. 8. Comparison of theoretical predictions of Arruda–Boyce molecular

stress-softened phenomenological network models with equibiaxial

inflation data (BALL 9) for which m0Z63 MPa, N8Z33.11, bsZ0.19 and

bZ0.0245 (N m)K1/2.

Fig. 10. Comparison of theoretical predictions of the phenomenological

network models with uniaxial extension dimensionless data for which the

material parameter values are: m0Z0.085, N8Z19.5, bsZ1.25 and bZ0.33.
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phenomenological stress-softening material model (18) in

characterizing the Mullins effect is shown to be very good in

modeling the uniaxial extension data by Mullins and Tobin

[3], Muhr [15], Cheng [16], and the balloon inflation data by

Johnson and Beatty [17]. In the case of pure shear

experimental data [18], our model fails in predicting with

precision the material stress-softened behavior but this can

be explained by the fact that our stress-softened phenom-

enological model neglects the viscoelastic material effects.

However, our model requires determination of only three

material constants: the shear modulus m0, the model specific

molecular chain number of links N, and the softening rate

parameter b. Moreover, comparison of our model developed

in this paper with the strain based phenomenological model

described by Eq. (67) shows that the energy based

phenomenological model is slightly superior in following

experimental data.
Fig. 9. Comparison of theoretical predictions of Arruda–Boyce molecular

stress-softened phenomenological network models with equibiaxial

inflation data (BALL 10) for which m0Z39 MPa, N8Z33.11, bsZ0.19

and bZ0.0245 (N m)K1/2.
Finally, it is evident that our energy-based phenomen-

ological model may be applied to three-dimensional

deformation states since, the damage function is controlled

by the strain energy associated with the primary defor-

mation and not just by the specific deformation from which

it is calculated. Besides, the extend of the damage sustained

by our energy based phenomenological material model

depends on the point, where the virgin material is unloaded

from a state of maximum previous strain Wmax.
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